

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology (NBA Accredited)

(An ISO – 9001: 2008 Certified & 'A' Grade accredited Institution by NAAC)

Course Outcome

Session 2018-19 (Even Sem)

Department of Information

Technology

13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD - 201206

Website: www.kiet.edu

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology

Index

		4 th Semester
S No.	Subject Code	Subject Name
1	ROE043	Laser System and Application
2	REC406	Information Theory & Coding
3	RCS401	Operating System
4	RCS402	Software Engineering
5	RCS403	Theory of Automata & Formal Language
6	RAS 402	Environment & Ecology
7	RCS451	Operating Systems Lab
8	RCS452	Software Engineering Lab
9	RCS453	Theory of Automata and Formal Language Lab
10	RCS454	Python Programming Lab

		6 th Semester
S No.	Subject Code	Subject Name
1	RAS 601	Industrial Management
2	RAS 602	Industrial Sociology
3	RCS601	Computer Networks
4	RIT 601	Web Technology
5	RCS602	Compiler Design
6	RIT062	Data Warehousing & Data Mining
7	RCS651	Computer Networks Lab
8	RIT651	Web Technology Lab
9	RCS652	Compiler Design Lab
10	RCS654	Data Warehousing & Data Mining Lab

13 KM STONE, GHAZIABAD-MEERUT ROAD, GHAZIABAD – 201206 Website: www.kiet.edu

KIET GROUP OF INSTITUTIONS, GHAZIABAD

Department of Information Technology

		8 th Semester
S No.	Subject Code	Subject Name
1	NIT801	Mobile Computing
2	NCS082	Real Time System
3	NCS085	Data Compression
4	NIT-851	Seminar
5	NIT-852	Project

CO PO and Mapping of CO PO 2nd Year

(2017-2021 BATCH)

Session: - 2018-19 Semester:- 4th
Theory

	CO1:	Unders	stand t	he basio	e princi	ple of	laser a	and ba	sic in	quantı	ım me	chanics	•		
	CO2:	Descri	be the	elemen	ts and	Techn	iques (of Lase	er: and	l solve	simpl	e proble	ems.		
Laser System and	CO3:	Descri	be the	Princip	le of L	aser &	Gene	ral La	sers: N	Iain c	ompon	ents of	Laser.		
Application (ROE043)						-		work	ing p	rincipl	le of l	LASER	and i	ts basic	
(ROE043)	industrial and scientific applications. CO5: Describe Laser Applications in industry and different areas in an optical fi secure foundation for optical fiber communication systems to attain a sound level disphotography.														
CO \ PO Mapping	PO1														
CO1	1										2	2	1	1	
CO2	1	1											1	1	
CO3	1	1	1										1	1	
CO4	2	2	2	2	2	2	2	1			1	1	1	1	
CO5	2	2	2	2	1	1	1	1	1		1	1	1	1	
Average	1.40	1.50	1.67	2.00	1.50	1.50	1.50	1.00	1.00		1.33	1.33	1.00	1.00	

	CO1: Understand and explain the basic concepts of information theory.														
Information	CO2		rstand ng the		coding	g, chan	nel and	l chanr	nel cap	acity, c	hannel	coding	and re	lation	
Theory & Coding	CO3	: Desc	ribe the	e real-l	ife app	licatio	ns base	d on th	ne fund	amenta	ıl theor	y.			
(REC406)	CO4	CO4: Calculate entropy, channel capacity, bit error rate, code rate and so on.													
CO5: Implement the encoder and decoder of one block code or convolution code using programming language.										g any					
CO \ PO Mapping	PO1														
CO1	3	3	1	3	1	1	1	1	1	1	1	2	1	1	
CO2	3	3	1	1	1	1	1	1	1	1	1	2	1	1	
CO3	3	3	1	1	3	1	1	1	1	1	1	2	1	1	
CO4	3	3	1	1	1	1	2	1	1	1	1	2	1	1	
CO5	3														
Average	3.00	3.00	1.00	1.40	1.40	1.00	1.40	1.00	1.00	1.00	1.00	2.00	1.20	1.00	

Operating System (RCS401)	CO2	of operation operation of operation operation of operation o	ify and for solution about ns.	systen d apply ving cr	n and f y knov ritical s sses, Tl	wledge ection hreads,	of var proble	ormed rious s ms in c	by moo softwar concurr owledg	dern op e and rent pro e of var	hardwa becesses.	cheduli	ns. chronia	zation
	 CO4: Understand and apply process management and memory management concepts to solve various hardware and software problems. CO5: Identify various file management and security mechanisms in order to design efficient software system by using various access control techniques. 													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	1	2	1	1	1	1	1	2	2
CO2	3	3	2	2	3	1	1	2	1	1	1	2	3	2
CO3	3	3	1	1	3	1	1	1	1	1	1	2	1	1
CO4	3	1	3	3	3	3	1	1	1	1	1	3	2	2
CO5	3	2	3	2	3	1	2	1	1	1	1	2	2	2
Average	3	2.2	2	1.8	2.6	1.4	1.4	1.2	1	1	1	2	2	1.8

			1											
Average	3	2.2	2	1.8	2.6	1.4	1.4	1.2	1	1	1	2	2	1.8
Software Engineering (RCS402)	CO2	: Ident requi : Desig varyi demo	rement gn, imp ng constrate y know	rmulate as appro- plement mplexi e accep vledge ne, part	e, analypriate tand extended to the destroy of comicularly	yze an to thei valuate t mee ign an puting	d solver solution software software development, matheres mode	e problematics	lems a sed sys eeds, s at princ s, scien	tems, cosatisfy	as iden	ents or ic con	progra straints	ms of and ate to
	CO5	: Unde								itenanc	e and o	continu	ing sof	tware
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	2	3	1	3	3	2	2	2	2	2
CO2	3	3	2	2	2	3	3	2	3	3	2	2	2	2
CO3	3	2	3	3	3	3	3	3	3	2	3	3	2	1
CO4	3	3	2	3	3	3	3	3	2	2	3	2	2	2
CO5	2	2	3	3	1	2	2	2	3	3	2	3	2	2
Average	2.80	2.40	2.60	2.60	2.20	2.80	2.40	2.60	2.80	2.40	2.40	2.40	2.00	1.80

	CO1: Acquire a full understanding and applicability of Automata Theory as the basis of all computer science languages design														
Theory of Automata & Formal	CO		•	ferent heir ap		_	0	•	gn the i	recogni	zer for	regular	langua	ages to	
Language	CO	3: Abil	ity to a	nalyze	& Des	sign gr	ammar	s for d	ifferen	t forma	l langu	ages.			
(RCS403)	CO	CO4: Understand the designing of Pushdown Automata and Turing machines.													
	CO	D5: Determine the decidability and intractability of computational problems.													
CO \ PO Mapping	PO1														
CO1	2	2	2	1	2	1	1	1	2	1	1	2	1	1	
CO2	2	2	2	1	2	1	1	1	2	1	1	2	1	1	
CO3	2	2	3	1	2	1	1	1	2	1	1	2	1	2	
CO4	2	2	2	1	2	1	1	1	2	1	1	2	2	2	
CO5	2	2	2	1	1	1	1	1	2	1	1	2	2	2	
Average	2.00	2.00	2.20	1.00	1.80	1.00	1.00	1.00	2.00	1.00	1.00	2.00	1.40	1.60	

Environment & Ecology (RAS402)	CO2	CO1: To be able to plan importance of new techniques for human and environmental development by reducing low-rate consumption of natural resources through environmental impact assessment process. CO2: To be able to plan the importance of sustainable use of natural resources with discussion about all conventional and non-conventional energy resources and their impact and implementation. CO3: To be able to plan the importance of sustainable use of natural resources with discussion about all conventional and non-conventional energy resources and their impact and implementation. CO4: To be able to understand the role of women education and individual NGOs and												
CO \ PO Manning	PO1	gove PO2	PO3	t for e	rvironi PO5	nental PO6	activiti	es. PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO \ PO Mapping	<u> </u>												PSUI	
CO1	1	1	2	3	1	3	3	2	2	2	2	3	1	1
CO2	1	2	2	1	1	3	1	2	1	2	2	3	1	1
CO3	1	1 3 2 3 1 3 2 2 1 3 3 1 1												
CO4	1	1 2 2 3 1 3 1 2 2 1 1 3 1 1												
Average	1.00	2.00	2.00	2.50	1.00	3.00	1.75	2.00	1.75	1.50	2.00	3.00	1.00	1.00

Practical

	CO	1: Und	lerstan	d and	apply	know	ledge	of bas	ic UN	IIX/LIN	NUX c	omman	ds to	solve	
							•				cations				
	CO											orithms	and	apply	
		kno	wledg	e to ide	entify t	he best	sched	uling a	lgorith	m as po	er softw	vare rec	uireme	ent.	
	CO	3: Uno	derstan	d and	imple	ment	the co	ncept	of pro	ocess s	ynchro	nizatio	n tool	s like	
Operating		sema	aphore	to sol	ve mu	tual ex	clusio	n prob	lems i	n orde	to co	ordinat	e conc	urrent	
Systems Lab		proc	esses.												
(RCS451) CO4: Apply knowledge of process management techniques to design and solve various control of the contr												arious			
		process synchronization problems like Producer Consumer problem, Reader Writers problem and dining philosophers' problem.													
						<u> </u>									
	CO						•			•	•	stems to	•		
		•			is dead	llock a	voidar	ice alg	orithm	s like	anker's	algori	thm us	sed in	
		bank	cing sy	stem.	I	I	I	I	I		ı	I			
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	1	1	2	2	1	1	2	2	2	1	2	2	
CO2	3	2	1	2	2	1	1		2	2	2	1	1	1	
CO3	2	2	1	2	1	2	2	1	2	2	2	1	2	1	
CO4	3	3 2 1 2 3 1 2 2 2 1 1 1													
CO5	3	3 3 1 2 3 2 2 1 2 2 1 2 1													
Average	2.80	2.20	1.00	1.80	2.20	1.60	1.50	1.00	2.00	2.00	2.00	1.00	1.60	1.20	

	CO1: Extract and analyze software requirements specification for different projects.														
Software	CO2	: Sele	ct a sof	tware o	develo	pment	proces	s mode	l for th	ne proje	ect.				
Engineering Lab (RCS452)	CO3	: Deve	lop soı	me basi	ic level	l of sof	tware a	archite	cture/d	esign u	ısing va	rious st	andard	tools.	
	CO4	CO4: Study tools used in designing a software product.													
	CO5	CO5: Applying knowledge of tools and converting design into specific codes.													
CO \ PO Mapping	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	3	2	3	2	2	3	3	3	3	2	2	2	2	2	
CO2	3	3	2	2	2	3	3	2	3	3	2	2	2	2	
CO3	3	2	3	3	3	3	3	3	3	2	3	3	2	2	
CO4	3	3 3 2 3 3 3 3 2 2 2 2 2													
CO5	2	2 2 3 3 3 2 2 2 3 3 2 2													
Average	2.80	2.40	2.60	2.60	2.60	2.80	2.80	2.60	2.80	2.40	2.40	2.40	2.00	2.00	

	CO1: Understand the DFA in JFLAP														
Theory of Automata and	CO2	: Unde	erstand	the NI	OFA in	JFLA	P								
Formal Language Lab	CO3	: Unde	erstand	the DF	DA in	JFLA	P								
(RCS453)	CO4	O4: Understand the NDPDA in JFLAP													
	CO5	CO5: Understand the Turing machine in JFLAP													
CO \ PO Mapping	PO1														
CO1	3	2	2	1	2	1	1	1	2	2	1	2	1	1	
CO2	3	2	2	1	2	1	1	1	2	2	1	2	1	1	
CO3	3	2	3	1	2	1	1	1	2	2	1	2	1	1	
CO4	3	2	2	1	2	1	1	1	2	2	1	2	1	1	
CO5	3	3 2 2 1 1 1 1 2 1 1 2 1 1													
Average	3.00	2.00	2.20	1.00	1.80	1.00	1.00	1.00	2.00	1.80	1.00	2.00	1.00	1.00	

	CO1	: Lear	n the b	asics o	f Pytho	on								
Double or	CO2	: Appl	y the b	asics ir	real li	ife prol	olem.							
Python Programming	CO3	: Learn	the ac	lvance	d techn	iques	of Pyth	on.						
Lab (RCS454)	CO4	: App	ly adva	inced to	echniq	ues of l	Python	in real	life pı	oblem.				
	CO5	5: Explain what competitive analysis is and to which situations it applies. Perfor competitive analysis												
		competitive analysis												
CO \ PO Mapping	PO1													
CO1	3	3	2	2	2	2	2	2	2	2	2	2	1	1
CO2	3	3	2	2	2	2	2	2	2	2	2	2	1	1
CO3	3	3	3	3	2	2	2	2	2	2	2	2	1	1
CO4	3	2	3	2	2	2	2	2	2	2	2	2	1	1
CO5	3	3	3	2	2	2	2	2	2	2	2	2	1	1
Average	3.00	2.80	2.60	2.20	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.00	3.00

CO PO and Mapping of CO PO 3rd Year

(2016-2020 BATCH)

Session: - 2016-20Semester:- 6th

Theory

	CO1					entals	of ind	ustrial	manag	gement,	busin	ess ent	erprise	s and
Industrial Management (RAS601)	CO3	: Unde needs : Unde metho : create mana : create	erstand s of the erstand od of p e and gemen e and	busine and everform evaluate t.	ess with valuate ing each te the	the coch oper concep	eeds and oncepts ration a of cost, ti	of deve of in and to e quality, ming,	elopme ventory elimina qualit	nt of er y mode te wast y cont	nployed els and age rol too	ses on res determined ls and	ine the	e best uality
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	eholde PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	103	100	107	3	2	2	2	3	1	1502
CO2	3	2	3	3				3	2	1	2	3	1	
CO3	3	3	3	3				3	1	1	1	3	1	1
CO4	3	3	3	2				3	2	2	1	3	1	1
CO5	3	3	2	3				3	3	2	3	3	1	1
Average	2.80	2.60	2.80	2.60				3.00	2.00	1.60	1.80	3.00	1.00	1.00

	СО	1: To p	orovide	studei	nts wit	h an o	verviev	v of in	dustria	1 socio	logy ar	nd vario	ous the	ories
		of o	organiz	ation s	tructur	e.								
	CO	2: To §	gain an	insigl	nt into	develo	pment	and c	onsequ	iences	of indu	ıstrializ	ation a	along
		wit	h prodi	active s	structu	re.								
Industrial Sociology	CO	3: To	get the	stude	nts ac	quainte	ed with	n basic	indus	trial po	olicies	in Indi	a and	how
(RAS602)		Sci	ence &	techno	ology i	s shapi	ng out	the bu	siness	world.				
	CO	4: To h	nave a	basic u	ndersta	anding	of con	tempo	rary iss	sues in	industr	ies like	grieva	ance,
		ind	industrial disputes, collective bargaining etc. with their resolution. To enable students to visualize the future in industry with reference to Cultural											
	CO:	5: To	: To enable students to visualize the future in industry with reference to Cultural											
		5: To enable students to visualize the future in industry with reference to Cultural issues, consumer society and sociological concerns.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	3	2	3	3	1	2	3	1	1
CO2	3	2	2	2	1	3	2	3	3	1	2	3	1	1
CO3	3	2	2	3	2	3	2	3	2	1	2	3	1	1
CO4	3	2	2	2	2	3	2	3	2	1	2	3	1	1
CO5	3	2	2	3	2	3	2	3	2	1	2	3	1	1
Average	3.00	2.00	2.00	2.40	1.60	3.00	2.00	3.00	2.40	1.00	2.00	3.00	1.00	1.00

	СО		d an ur puter n		_	of the f	undam	ental c	oncept	s and I	ayered	Archit	ecture	of
	CO	2: Und	erstand	l the ba		•		• •	propert	ies to d	etect ei	ror and	l devel	op the
Computer Networks (RCS601)	CO		_		•					resses t in subr		l netwo	rking	
(Resour)	CO			•			•	•		•	•	sentatio wards	•	
	CO:	also focus on network security issues to secure communication towards society. Discretely: Dis												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3	2	3	3
CO3	3	3	3	2	3	3	3	3	3	3	3	2	3	3
CO4	3	2	2	2	3	3	3	3	3	3	3	2	3	3
CO5	3	2	2	3	3	3	2	2	3	2	3	2	3	3
Average	3.00	2.40	2.40	2.40	3.00	3.00	2.80	2.80	3.00	2.80	3.00	2.20	3.00	3.00

	CO1							_		-	he insig	ghts of	intent	
		progr	ammir	ng to in	npleme	nt app	lication	s over	the we	eb.				
	CO2	: Unde	rstand,	analyz	ze and	apply t	he role	of ma	rkup la	inguage	es like I	HTML,	DHTN	1 L
		and X	KML ir	the w	orking	of the	web ap	plicati	ons.					
Web Technology	CO3	: Build	dynan	nic wel	pages	using	client-	side sc	ripting	g like Ja	ıva Scri	pt and	also the	e use
(RIT601)		of ne	tworki	ng con	cepts.									
	CO4	: Unde	rstand	the dat	abase o	connec	tivity v	vith JD	BC an	d learn	EJB to	design	variou	IS
		applications for Enterprise. Use web application development tools and concepts like Servlet, JSP, Apache												
	CO5	5: Use web application development tools and concepts like Servlet, JSP, Apache												
		5: Use web application development tools and concepts like Servlet, JSP, Apache Tomcat, WAMP etc. to implement dynamic applications.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	1	2	2	1	2	2	2	2	2
CO2	3	2	3	1	1	1	3	1	1	3	2	3	2	1
CO3	3	1	2	1	1	2	2	1	2	3	3	3	3	2
CO4	3	1	2	1	2	2	1	1	2	3	2	2	2	2
		1	1	1	2	2	1	1	2	3	2	2	2	3
CO5	3	1	1	1			1	1		3				3

Compiler Design (RCS602)	CO2	essen modu : Unde tables	ce of ales of a rstand s.	various a gener the par	ral compression co	piler to piling d its ty	ools. S tool ha pes an	tudents ving re d the d	will ealistic constru	also be constraction of lation 1	e able aints of of vario	to designation to des	ign mu lers. es of pa	ultiple arsing
		understanding of synthesized and inherited attributes. 4: Acquire knowledge about run time data structure like symbol table organization and different techniques used in that. 5: Understand the target machine's runtime environment, its instruction set for code generation and techniques used for code optimization.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	2	2	2	3	3	2	2	2	3	3
CO2	3	3	2	2	2	3	3	2	3	3	2	3	3	3
CO3	3	2	3	2	2	2	2	2	3	3	3	3	3	3
CO4	2	3	2	2	3	3	1	1	2	3	2	2	3	3
CO5	2	2	2	2	3	2	1	1	2	3	2	2	3	3
Average	2.60	2.60	2.40	1.80	2.40	2.40	1.80	1.80	2.60	2.80	2.20	2.40	3.00	3.00

Data Warehousing & Data Mining (RIT062)	С	O2: Al a o us O3: To	pility to data wa able fo o introd	o do co arehous r mana	nceptu se to p	al, Log resent t client	gical, and inform ts.	nd Phy ation n	rsical d needed	esign o	of data v	f data v wareho ent in a	uses. D	Design That is	
(KI1002)		Process CO4: Have a good knowledge of the fundamental concepts that provide the foundation of data mining. CO5: To have knowledge about Security, Backup and Recovery of data warehouse													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	2	3	1	2	3	2	1	3	2	2	2	3	3	
CO2	3	3	3	2	2	3	3	2	3	3	2	3	3	3	
CO3	2	2	3	2	1	2	2	2	3	3	3	3	2	3	
CO4	2	3	2	2	3	3	2	1	2	3	2	2	3	2	
CO5	3	2	3	2	3	2	3	1	2	3	2	2	2	3	
Average	2.60	2.40	2.80	1.80	2.20	2.60	2.40	1.40	2.60	2.80	2.20	2.40	2.60	2.80	

Practical

	CC		dersta pologie		funda	menta	l conc	epts o	f com	puter r	network	ting an	nd Net	work
	CC			out di simple				etwork	devic	es and	design	n, impl	ement,	and
Computer Networks Lab (RCS651)	CC							ds and			jues, s	kills, a	nd mo	odern
	CC			•	olems	and th	neir so	lutions	s, thin	k crea	tively	and co	ommun	icate
	CC	of: Describe how rapid progress of computer network technology can impact on the society and continue to advance personal knowledge and understanding.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	3	3	2	3	3	3	2	3	3
CO2	3	2	3	2	2	2	3	2	2	2	3	3	3	3
CO3	3	2	3	2	3	2	2	3	2	2	2	3	3	3
CO4	2	2	3	2	3	2	2	2	3	3	2	2	3	3
CO5	3	2	2	2	2	3	2	2	3	2	2	2	3	3
Average	2.80	2.00	2.60	2.00	2.40	2.40	2.40	2.20	2.60	2.40	2.40	2.40	3.00	3.00

Web Technology Lab (RIT651)	CO2	XML: Use videnti web s : Able: Analy	and in web aposities are sites.	npleme plication d appl d vario d build	ent it in on devo lies the us Cor dynan	e de the well e envir	ent softenment concept by pages	tware to the tware to the currents of the tware to the currents by its using	web a cools i.e	pplicate., XM availab	ions. L, Apa le on t	che To he mar	mcat eket to	L, and tc. and design on.
	CO5	also develop the web application using servlet and JSP. D5: Identify and implement the impact of web designing by database connectivity with JDBC in the current marketplace.												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	1	2	2	1	2	2	2	2	2
CO2	3	1	3	2	1	1	3	1	1	3	2	3	3	1
CO3	2	1	2	2	1	2	2	1	2	3	3	3	2	2
CO4	2	1	2	1	2	2	1	1	2	3	2	2	2	2
CO5	1	1	1	2	2	2	1	1	2	3	2	2	1	3
Average	2.20	1.20	2.00	1.60	1.60	1.60	1.80	1.20	1.60	2.80	2.20	2.40	2.00	2.00

	C	ap	ply the	know		of patte	rns, to	kens aı	nd regu		•	gn a co	•	
Compiler Design	C	O2: De	evelop	progra	m for s	olving	parser	proble	ms.					
Lab (RCS652)	C	O3: Cr	eate a	prograi	m for i	nterme	diate c	ode ge	neratio	n.				
	С	O4: D	evelop	a prog	ram fo	r imple	ementii	ng a sy	mbol t	able.				
	С	CO5: Learn the new code optimization techniques and apply it to improve the												the
		performance of a program in terms of time and space.												
CO \ PO Mapping	PO1													
CO1	3	3	3	2	2	2	2	3	3	2	2	2	3	3
CO2	3	3	2	2	2	3	3	2	3	3	2	3	3	3
CO3	3	2	3	2	2	2	2	2	3	3	3	3	3	3
CO4	2	3	2	2	3	3	1	1	2	3	2	2	3	3
CO5	2	2	2	2	3	2	1	1	2	3	2	2	3	3
Average	2.6	2.6	2.4	2	2.4	2.4	1.8	1.8	2.6	2.8	2.2	2.4	3	3

	CO1	: To pr	eproce	ss and	improv	ve data	quality	у.						
Data	CO2	: To se	lect da	ta and	technic	que for	the mi	ning.						
Warehousing & Data Mining	CO3	: To us	e Algo	rithms	for da	ta mini	ng.							
Lab (RCS654)	CO4	: To an	alyze	data.										
	CO5	4: To analyze data. 5: To compare techniques based on result.												
CO \ PO Mapping	PO1													
CO1	3	3	3	2	3	1	1	2	2	3	3	2	2	3
CO2	3	1	2	3	2	1	1	3	2	1	2	2	2	3
CO3	3	3	3	3	2	1	1	1	2	2	3	3	2	3
CO4	3	2	2	3	2	3	2	2	3	2	2	3	2	3
CO5	2	2	3	3	3	3	2	2	3	2	2	3	2	3
Average	2.80	2.20	2.40	2.60	2.40	1.60	1.20	1.80	2.20	2.20	2.40	2.40	2.20	3.00

CO PO and Mapping of CO PO 4th Year

(2015-2019 BATCH)

Session:- 2018-19 Semester:- 8th

Theory

	CC		•		ots and	feature	es of m	obile c	omput	ing tec	hnologi	ies and		
		app	licatio	ns.										
	CC)2: Un	derstan	d the c	haracte	eristics	and lin	nitatio	ns of n	nobile (comput	ing har	dware	
Mobile		dev	ice inc	luding	their u	ıser-int	erface	modali	ities.					
Computing	CC)3: An	alyze tl	ne func	tionali	ties an	d comp	onents	of mo	bile co	mputin	g techn	ologies	S.
(NIT801)	CC	04: Un	derstan	d diffe	rent ce	llular s	scheme	s, secu	rity an	d trans	action p	processi	ing use	d in
		mo	bile co	mputin	ıg.									
	CC)5: Co	5: Compare different routing protocols in Mobile Ad hoc Network that supports the connectivity to cellular networks for the appreciation of society.											the
		cor	connectivity to cellular networks for the appreciation of society.											
CO \ PO Mapping	PO1													PSO2
CO1	3	2	3	1	1	1	1	1	1	1	1	3	3	3
CO2	3	2	1	1	1	1	1	1	1	1	2	2	3	3
CO3	3	1	1	1	1	1	1	1	1	1	1	1	3	3
CO4	3	1	1	2	2	1	1	1	1	1	1	1	3	3
CO5	3	2	2	3	2	2	1	1	2	2	1	2	3	3
Average	3.00	1.60	1.60	1.60	1.40	1.20	1.00	1.00	1.20	1.20	1.20	1.80	3.00	3.00

	CO1	CO1: Identify Lossless and lossy compression, Information Theory and Modelling.												
Data	CO2: Acquire knowledge of generic Lossless (text) compression Algorithms.													
Compression (NCS085)	CO3: Apply Lossy (Image) Compression Algorithms.													
(NCSU03)	CO4	CO4: Analyze distortion and quantization techniques												
	CO5	CO5: Demonstrate Advanced Quantization Techniques												
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	3	1	1	1	1	1	1	1	1	3	3
CO2	2	3	2	3	1	2	1	1	1	1	1	1	3	3
CO3	3	3	3	3	1	2	1	1	1	1	1	1	3	3
CO4	3		1	3	1	1	1	1	1	1	1	1	3	3
CO5	3	2	1	3	1	1	1	1	1	1	1	1	3	3
Average	2.80	2.40	1.60	3.00	1.00	1.40	1.00	1.00	1.00	1.00	1.00	1.00	3.00	3.00

	CC)1. Cla	ممايي طن	ffamant	ioto the	diffor	ont ica	uaa tha	t omico	in dos	ianina	aaft on	d band	<u></u>
	CO1: Clearly differentiate the different issues that arises in designing soft and hard real-												геаі-	
	time concurrent, reactive, safety-critical and embedded systems.													
	CO2: Understand the various concepts of time that arise in the real time systems and												and	
	communicate effectively.													
Real Time	CO3: Analyze and apply a variety of static and dynamic scheduling mechanisms													iisms
System		suit	able fo	or soft	and har	rd real	time sy	ystems	and ut	ilize kn	owledg	ge to so	lve rea	l life
(NCS082)		suitable for soft and hard real time systems and utilize knowledge to solve real life problems.												
CO4: Understand the need and the challenges in the designing of sof									of soft	ft and hard real time				
	systems which can consider environmental factors.													
	CO5: Compare and determine scheduling algorithms and the schedulable criteria of													
			iodic ta				0 00 00 1111	5 41.601			50110		011001	01
G017075	DO1	<u> </u>			DO#	DO.	DO	DOG	DOG	DO10	DO44	DO12	DGO4	DG C A
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	2	1	1	1	2	2	1	3	3
CO2	2	3	2	1	2	1	1	2	2	2	1	2	3	3
CO3	3	3	3	2	3	2	2	3	3	1	2	2	3	3
CO4	3	3	3	2	2	2	2	3	3	2	3	2	3	3
CO5	3	3	3	2	3	2	2	2	3	2	1	2	3	3
Average	2.80	3.00	2.60	1.80	2.40	1.80	1.60	2.20	2.40	1.80	1.80	1.80	3.00	3.00

Practical

	CO1: Select and summarize all aspects of the real-life problem through survey. CO2: Apply acquired knowledge to develop working model and plan different phases for its													r its
Project	execution.													
(NIT852)	CO3: A	Analyze	outco	me of e	each ph	ase usi	ng vari	ious to	ols, tec	hnique	s, and c	coding	practic	es.
	CO4: Justify/defend opinions, validity of ideas or quality of work based on a set of criteria.											a.		
	CO5: 7	Test the	e work	ing mo	del an	d mod	ify rela	ited ph	ase acc	cording	ly. Fin	ally in	tegrate	all
	phases													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	1	1	3	3	3	3	3	3
CO2	3	3	3	3	2	2	1	1	3	2	3	3	3	3
CO3	3	3	3	3	2	2	1	1	3	2	3	3	3	3
CO4	3	3	3	3	2	2	1	1	3	2	2	3	3	3
CO5	3	3	3	3	2	2	1	1	3	2	1	2	3	3
Average	3.00	3.00	3.00	3.00	2.20	2.00	1.00	1.00	3.00	2.20	2.40	2.80	3.00	3.00

	CO1:	CO1: Develop presentation skills.												
g ·	CO2:	CO2: Impart knowledge in different aspects of knowledge domains.												
Seminar	CO3:	CO3: Build confidence and improve communication skills.												
(NIT-851)	CO4:	CO4: Sharpen their personality and intelligence.												
	CO5: Share ideas among the team members.													
CO \ PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	2	1	1	1	2	2	1	3	3	3
CO2	3	3	2	2	1	1	1	1	3	2	1	3	3	3
CO3	3	3	3	3	1	1	1	2	1	3	1	3	3	3
CO4	3	3	3	3	2	2	1	2	2	3	1	3	3	3
CO5	3	3	3	3	2	2	1	1	1	3	1	3	3	3
Average	3.00	3.00	2.80	2.40	1.60	1.40	1.00	1.40	1.80	2.60	1.00	3.00	3.00	3.00